Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Carbohydr Polym ; 285: 119256, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35287870

RESUMO

The enzymatic hydrolysis of native starch lacks efficiency because starch is mostly confined in semi-crystalline granules. To address the challenges associated with gelatinization and render native cassava starch (CS) amenable to enzymatic hydrolysis (enzyme cocktail from Aspergillus awamori and Trichoderma reesei), dry-extrusion pretreatment of CS mixed with sugarcane bagasse (SB) was studied. Results showed that among the CS:SB mass ratios studied (1:1; 1:0.5 and 1:0.25), extruded CS:SB (1:0.25) gave the highest 3-hour glucose yield (71.5%) after enzymatic hydrolysis. Extrusion reduced CS:SB (1:0.25) crystallinity by 78% and increased the intensity of all major FTIR absorption bands by 67-202%. The optimum 3-hour glucose yield from extruded CS:SB (1:0.25) hydrolysis was 74.1%, which was 330% higher than from untreated CS. The water absorption and solubility indices of the treated biomass increased by 145% and 12,640%, respectively under the optimum conditions, aiding the hydrolysis process. The dry extrudates were easy to manipulate and store.


Assuntos
Manihot , Saccharum , Celulose/química , Hidrólise , Manihot/química , Saccharum/química , Amido/química
2.
Biotechnol Biofuels ; 13: 58, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32211072

RESUMO

The industrial production of sugar syrups from lignocellulosic materials requires the conduction of the enzymatic hydrolysis step at high-solids loadings (i.e., with over 15% solids [w/w] in the reaction mixture). Such conditions result in sugar syrups with increased concentrations and in improvements in both capital and operational costs, making the process more economically feasible. However, this approach still poses several technical hindrances that impact the process efficiency, known as the "high-solids effect" (i.e., the decrease in glucan conversion yields as solids load increases). The purpose of this review was to present the findings on the main limitations and advances in high-solids enzymatic hydrolysis in an updated and comprehensive manner. The causes for the rheological limitations at the onset of the high-solids operation as well as those influencing the "high-solids effect" will be discussed. The subject of water constraint, which results in a highly viscous system and impairs mixing, and by extension, mass and heat transfer, will be analyzed under the perspective of the limitations imposed to the action of the cellulolytic enzymes. The "high-solids effect" will be further discussed vis-à-vis enzymes end-product inhibition and the inhibitory effect of compounds formed during the biomass pretreatment as well as the enzymes' unproductive adsorption to lignin. This review also presents the scientific and technological advances being introduced to lessen high-solids hydrolysis hindrances, such as the development of more efficient enzyme formulations, biomass and enzyme feeding strategies, reactor and impeller designs as well as process strategies to alleviate the end-product inhibition. We surveyed the academic literature in the form of scientific papers as well as patents to showcase the efforts on technological development and industrial implementation of the use of lignocellulosic materials as renewable feedstocks. Using a critical approach, we expect that this review will aid in the identification of areas with higher demand for scientific and technological efforts.

3.
Biotechnol Lett ; 39(11): 1717-1723, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28766088

RESUMO

OBJECTIVE: Glucose conversion into disaccharides was performed with ß-glucosidases from Prunus dulcis (ß-Pd), Aspergillus niger (ß-An) and A. awamori (ß-Aa), in reactions containing initial glucose of 700 and 900 g l-1. RESULTS: The reactions' time courses were followed regarding glucose and product concentrations. In all cases, there was a predominant formation of gentiobiose over cellobiose and also of oligosaccharides with a higher molecular mass. For reactions containing 700 g glucose l-1, the final substrate conversions were 33, 38, and 23.5% for ß-An, ß-Aa, and ß-Pd, respectively. The use of ß-An yielded 103 g gentiobiose l-1 (15.5% yield), which is the highest reported for a fungal ß-glucosidase. The increase in glucose concentration to 900 g l-1 resulted in a significant increase in disaccharide synthesis by ß-Pd, reaching 128 g gentiobiose l-1 (15% yield), while for ß-An and ß-Aa, there was a shift toward the synthesis of higher oligosaccharides. CONCLUSION: ß-Pd and the fungal ß-An and ß-Aa ß-glucosidases present quite dissimilar kinetics and selective properties regarding the synthesis of disaccharides; while ß-Pd showed the highest productivity for gentiobiose synthesis, ß-An presented the highest specificity.


Assuntos
Aspergillus/enzimologia , Dissacarídeos/biossíntese , Prunus dulcis/enzimologia , beta-Glucosidase/metabolismo , Aspergillus niger/enzimologia , Proteínas Fúngicas/metabolismo , Glucose/metabolismo , Cinética , Peso Molecular , Proteínas de Plantas/metabolismo , Especificidade por Substrato
4.
Carbohydr Polym ; 128: 75-81, 2015 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-26005141

RESUMO

Cellulose nanocrystals (CNCs), a biomaterial with high added value, were obtained from pure cellulose, Eucalyptus holocellulose, unbleached Kraft pulp, and sugarcane bagasse, by fibrillating these biomass substrates using wet disk milling (WDM) followed by enzymatic hydrolysis using endoglucanase/ß-glucosidase. The hydrolysis experiments were conducted using the commercial enzyme OptimashBG or a blend of Pyrococcus horikoshii endoglucanase and Pyrococcus furiosus ß-glucosidase. The fibrillated materials and CNCs were analyzed by X-ray diffraction, atomic force microscopy, scanning electron microscopy, and the specific surface area (SSA) was measured. WDM resulted in the formation of long and twisted microfibers of 1000-5000 nm in length and 4-35 nm in diameter, which were hydrolyzed into shorter and straighter CNCs of 500-1500 nm in length and 4-12 nm in diameter, with high cellulose crystallinity. Therefore, the CNC's aspect ratio was successfully adjusted by endoglucanases under mild reaction conditions, relative to the reported acidic hydrolysis method.


Assuntos
Celulose/química , Nanopartículas/química , Biomassa , Celulase/química , Hidrólise , Madeira/química , beta-Glucosidase/química
5.
Biotechnol Biofuels ; 8: 25, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25763103

RESUMO

BACKGROUND: Chlorophyte microalgae have a cell wall containing a large quantity of cellulose Iα with a triclinic unit cell hydrogen-bonding pattern that is more susceptible to hydrolysis than that of the cellulose Iß polymorphic form that is predominant in higher plants. This study addressed the enzymatic hydrolysis of untreated Chlorella homosphaera biomass using selected enzyme preparations, aiming to identify the relevant activity profile for the microalgae cellulose hydrolysis. Enzymes from Acremonium cellulolyticus, which secretes a complete pool of cellulases plus ß-glucosidase; Trichoderma reesei, which secretes a complete pool of cellulases with low ß-glucosidase; Aspergillus awamori, which secretes endoglucanases and ß-glucosidase; blends of T. reesei-A. awamori or A. awamori-A. cellulolyticus enzymes; and a purified A. awamori ß-glucosidase were evaluated. RESULTS: The highest initial glucan hydrolysis rate of 140.3 mg/g/h was observed for A. awamori enzymes with high ß-glucosidase, low endoglucanase, and negligible cellobiohydrolase activities. The initial hydrolysis rates when using A. cellulolyticus or T. reesei enzymes were significantly lower, whereas the results for the T. reesei-A. awamori and A. awamori-A. cellulolyticus blends were similar to that for the A. awamori enzymes. Thus, the hydrolysis of C. homosphaera cellulose was performed exclusively by the endoglucanase and ß-glucosidase activities. X-ray diffraction data showing negligible cellulose crystallinity for untreated C. homosphaera biomass corroborate these findings. The A. awamori-A. cellulolyticus blend showed the highest initial polysaccharide hydrolysis rate of 185.6 mg/g/h, as measured by glucose equivalent, in addition to the highest predicted maximum glucan hydrolysis yield of 47% of total glucose (w/w). T. reesei enzymes showed the lowest predicted maximum glucan hydrolysis yield of 25% (w/w), whereas the maximum yields of approximately 31% were observed for the other enzyme preparations. The hydrolysis yields were proportional to the enzyme ß-glucosidase load, indicating that the endoglucanase load was not rate-limiting. CONCLUSIONS: High rates of enzymatic hydrolysis were achieved for untreated C. homosphaera biomass with enzymes containing endoglucanase and ß-glucosidase activities and devoid of cellobiohydrolase activity. These findings simplify the complexity of the enzyme pools required for the enzymatic hydrolysis of microalgal biomass decreasing the enzyme cost for the production of microalgae-derived glucose syrups.

6.
Braz J Microbiol ; 44(2): 569-76, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24294256

RESUMO

The production of xylanase, ß-xylosidase, ferulic acid esterase and ß-glucosidase by Aspergillus awamori 2B.361 U2/1, a hyper producer of glucoamylase and pectinase, was evaluated using selected conditions regarding nitrogen nutrition. Submerged cultivations were carried out at 30 °C and 200 rpm in growth media containing 30 g wheat bran/L as main carbon source and either yeast extract, ammonium sulfate, sodium nitrate or urea, as nitrogen sources; in all cases it was used a fixed molar carbon to molar nitrogen concentration of 10.3. The use of poor nitrogen sources favored the accumulation of xylanase, ß-xylosidase and ferulic acid esterase to a peak concentrations of 44,880; 640 and 118 U/L, respectively, for sodium nitrate and of 34,580, 685 and 170 U/L, respectively, for urea. However, the highest ß-glucosidase accumulation of 10,470 U/L was observed when the rich organic nitrogen source yeast extract was used. The maxima accumulation of filter paper activity, xylanase, ß-xylosidase, ferulic acid esterase and ß-glucosidase by A. awamori 2B.361 U2/1 was compared to that produced by Trichoderma reesei Rut-C30. The level of ß-glucosidase was over 17-fold higher for the Aspergillus strain, whereas the levels of xylanase and ß-xylosidase were over 2-fold higher. This strain also produced ferulic acid esterase (170 U/L), which was not detected in the T. reesei culture.


Assuntos
Aspergillus/enzimologia , Hidrolases de Éster Carboxílico/metabolismo , Xilosidases/metabolismo , beta-Glucosidase/metabolismo , Aspergillus/genética , Aspergillus/crescimento & desenvolvimento , Carbono/metabolismo , Meios de Cultura/química , Nitrogênio/metabolismo , Temperatura
7.
Bioresour Technol ; 149: 551-5, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24091019

RESUMO

This study investigated the requirement of cellobiohydrolases (CBH) for saccharification of microcrystalline cellulose and sugarcane bagasse pretreated either by ball milling (BM) or by ionic liquid (IL) [Emim][Ac]. Hydrolysis was done using CBH-free blends of Pyrococcus horikoshii endoglucanase (EG) plus Pyrococcus furiosus ß-glucosidase (EGPh/BGPf) or Optimash™ BG while Acremonium Cellulase was used as control. IL-pretreated substrates were hydrolyzed more effectively by CBH-free enzymes than were the BM-pretreated substrates. IL-treatment decreased the crystallinity and increased the specific surface area (SSA), whereas BM-treatment decreased the crystallinity without increasing the SSA. The hydrolysis of IL-treated cellulose by EGPh/BGPf showed a saccharification rate of 3.92 g/Lh and a glucose yield of 81% within 9h. These results indicate the efficiency of CBH-free enzymes for the hydrolysis of IL-treated substrates.


Assuntos
Biotecnologia/métodos , Celulase/metabolismo , Celulose 1,4-beta-Celobiosidase/metabolismo , Celulose/metabolismo , Imidazóis/farmacologia , Líquidos Iônicos/farmacologia , Saccharum/química , Cristalização , Glucose/metabolismo , Hidrólise , Pyrococcus/enzimologia , Fatores de Tempo , Xilose/metabolismo
8.
Braz. j. microbiol ; 44(2): 569-576, 2013. graf, tab
Artigo em Inglês | LILACS | ID: lil-688590

RESUMO

The production of xylanase, β-xylosidase, ferulic acid esterase and β-glucosidase by Aspergillus awamori 2B.361 U2/1, a hyper producer of glucoamylase and pectinase, was evaluated using selected conditions regarding nitrogen nutrition. Submerged cultivations were carried out at 30 ºC and 200 rpm in growth media containing 30 g wheat bran/L as main carbon source and either yeast extract, ammonium sulfate, sodium nitrate or urea, as nitrogen sources; in all cases it was used a fixed molar carbon to molar nitrogen concentration of 10.3. The use of poor nitrogen sources favored the accumulation of xylanase, β-xylosidase and ferulic acid esterase to a peak concentrations of 44,880; 640 and 118 U/L, respectively, for sodium nitrate and of 34,580, 685 and 170 U/L, respectively, for urea. However, the highest β-glucosidase accumulation of 10,470 U/L was observed when the rich organic nitrogen source yeast extract was used. The maxima accumulation of filter paper activity, xylanase, β-xylosidase, ferulic acid esterase and β-glucosidase by A. awamori 2B.361 U2/1 was compared to that produced by Trichoderma reesei Rut-C30. The level of β-glucosidase was over 17-fold higher for the Aspergillus strain, whereas the levels of xylanase and β-xylosidase were over 2-fold higher. This strain also produced ferulic acid esterase (170 U/L), which was not detected in the T. reesei culture.


Assuntos
Aspergillus/enzimologia , Hidrolases de Éster Carboxílico/metabolismo , Xilosidases/metabolismo , beta-Glucosidase/metabolismo , Aspergillus/genética , Aspergillus/crescimento & desenvolvimento , Carbono/metabolismo , Meios de Cultura/química , Nitrogênio/metabolismo , Temperatura
9.
Carbohydr Res ; 363: 33-7, 2012 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-23103512

RESUMO

This study evaluated the interference of the amino acids tryptophan, cysteine, histidine, tyrosine, hydroxyproline, leucine, proline, serine, glycine, valine, glutamic acid, phenylalanine, and methionine on the measurement of reducing sugars using a phenol-free 3,5-dinitrosalicylic acid (DNS) reagent. It was found that in reaction mixtures containing 20mM of either tryptophan, cysteine, histidine, tyrosine, or hydroxyproline the measurement of 3.7 mM glucose was overestimated by 76%, 50%, 35%, 18%, and 10%, respectively. The amino acids valine, glutamic acid, and phenylalanine did not affect the DNS reaction, while methionine decreased the color development by 5%. The measurement of glucose, xylose, arabinose, and cellobiose at the 3.7-12.4 mM range in the presence of 20 mM cysteine resulted in an overestimated concentration of 34.8-50%. Enzymatic assays for measuring xylanolytic and filter paper activity (FPAse) were conducted in the presence of 20-60 mM cysteine, and compared to cysteine-free assays. In the presence of cysteine, the measured xylanase activity increased threefold and the FPAse activity increased twofold due to the overestimation of the reducing sugar concentrations in the assays. The interference from cysteine was reduced to a maximum of 8.6% when a DNS reagent containing phenol was used.


Assuntos
Aminoácidos/metabolismo , Artefatos , Carboidratos/química , Ensaios Enzimáticos/métodos , Glicosídeo Hidrolases/metabolismo , Substâncias Redutoras/química , Salicilatos/metabolismo , Colorimetria , Glicosídeo Hidrolases/análise , Substâncias Redutoras/metabolismo , Salicilatos/química
10.
J Ind Microbiol Biotechnol ; 38(8): 901-7, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20844924

RESUMO

The aim of this work was to select an efficient impeller to be used in a stirred reactor for the enzymatic hydrolysis of sugar cane bagasse. All experiments utilized 100 g (dry weight)/l of steam-pretreated bagasse, which is utilized in Brazil for cattle feed. The process was studied with respect to the rheological behavior of the biomass hydrolysate and the enzymatic conversion of the bagasse polysaccharides. These parameters were applied to model the power required for an impeller to operate at pilot scale (100 l) using empirical correlations according to Nagata [16]. Hydrolysis experiments were carried out using a blend of cellulases, ß-glucosidase, and xylanases produced in our laboratory by Trichoderma reesei RUT C30 and Aspergillus awamori. Hydrolyses were performed with an enzyme load of 10 FPU/g (dry weight) of bagasse over 36 h with periodic sampling for the measurement of viscosity and the concentration of glucose and reducing sugars. The mixture presented pseudoplastic behavior. This rheological model allowed for a performance comparison to be made between flat-blade disk (Rushton turbine) and pitched-blade (45°) impellers. The simulation showed that the pitched blade consumed tenfold less energy than the flat-blade disk turbine. The resulting sugar syrups contained 22 g/l of glucose, which corresponded to 45% cellulose conversion.


Assuntos
Celulose/metabolismo , Saccharum/metabolismo , Gerenciamento de Resíduos/instrumentação , Biodegradação Ambiental , Biomassa , Reatores Biológicos/microbiologia , Brasil , Celulases/metabolismo , Hidrólise , Polissacarídeos/metabolismo , Reologia , Vapor , Trichoderma/enzimologia , Trichoderma/metabolismo , Viscosidade , Gerenciamento de Resíduos/métodos , beta-Glucosidase/metabolismo
11.
J Ind Microbiol Biotechnol ; 37(10): 1041-51, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20549295

RESUMO

This study presents data on the production, purification, and properties of a thermostable ß-xylanase produced by an Aspergillus awamori 2B.361 U2/1 submerged culture using wheat bran as carbon source. Fractionation of the culture filtrate by membrane ultrafiltration followed by Sephacryl S-200 and Q-Sepharose chromatography allowed for the isolation of a homogeneous xylanase (PXII-1), which was 32.87 kDa according to MS analysis. The enzyme-specific activity towards soluble oat spelt xylan, which was found to be 490 IU/mg under optimum reaction conditions (50°C and pH 5.0-5.5), was 17-fold higher than that measured in the culture supernatant. Xylan reaction products were identified as xylobiose, xylotriose, and xylotetraose. K (m) values (mg ml(-1)) for soluble oat spelt and birchwood xylan were 11.8 and 9.45, respectively. Although PXII-1 showed 85% activity retention upon incubation at 50 °C and pH 5.0 for 20 days, incubation at pH 7.0 resulted in 50% activity loss within 3 days. PXII-1 stability at pH 7.0 was improved in the presence of 20 mM cysteine, which allowed for 85% activity retention for 25 days. This study on the production in high yields of a remarkably thermostable xylanase is of significance due to the central role that this class of biocatalyst shares, along with cellulases, for the much needed enzymatic hydrolysis of biomass. Furthermore, stable xylanases are important for the manufacture of paper, animal feed, and xylooligosaccharides.


Assuntos
Aspergillus/enzimologia , Endo-1,4-beta-Xilanases/isolamento & purificação , Endo-1,4-beta-Xilanases/metabolismo , Animais , Cromatografia em Gel/métodos , Cromatografia por Troca Iônica/métodos , Cisteína/metabolismo , Fibras na Dieta/metabolismo , Endo-1,4-beta-Xilanases/química , Ativadores de Enzimas/metabolismo , Estabilidade Enzimática , Temperatura Alta , Concentração de Íons de Hidrogênio , Espectrometria de Massas , Peso Molecular , Especificidade por Substrato , Fatores de Tempo , Ultrafiltração/métodos , Xilanos/metabolismo
12.
Biodegradation ; 21(5): 815-24, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20221846

RESUMO

Agaricus brasiliensis CS1, Pleurotus ostreatus H1 and Aspergillus flavus produced holocellulases when grown in solid and submerged liquid cultures containing agro-industrial residues, including sugar cane bagasse and dirty cotton residue, as substrates. These isolates proved to be efficient producers of holocellulases under the conditions used in this screening. Bromatological analysis of agro-industrial residues showed differences in protein, fiber, hemicellulose, cellulose and lignin content. Maximal holocellulase activity (hemicellulase, cellulase and pectinase) was obtained using solid-state cultivation with 10% substrate concentration. In this case, remarkably high levels of xylanase and polygalacturonase activity (4,008 and 4,548 IU/l, respectively) were produced by A. flavus when grown in media containing corn residue, followed by P. ostreatus H1 with IU/l values of 1,900 and 3,965 when cultivated on 5% and 10% sugar cane bagasse, respectively. A. brasiliensis CS1 showed the highest reducing sugar yield (11.640 mg/ml) when grown on medium containing sugar cane bagasse. A. brasiliensis was also the most efficient producer of protein, except when cultivated on dirty cotton residue, which induced maximal production in A. flavus. Comparison of enzymatic hydrolysis of sugar cane bagasse and dirty cotton residue by crude extracts of A. brasiliensis CS1, P. ostreatus H1 and A. flavus showed that the best reducing sugar yield was achieved using sugar cane bagasse as a substrate.


Assuntos
Agricultura , Celulase/biossíntese , Fungos/enzimologia , Fungos/crescimento & desenvolvimento , Resíduos Industriais , Plantas/microbiologia , Agaricus/enzimologia , Agaricus/crescimento & desenvolvimento , Aspergillus flavus/enzimologia , Aspergillus flavus/crescimento & desenvolvimento , Carboidratos/análise , Celulase/metabolismo , Misturas Complexas , Endo-1,4-beta-Xilanases/metabolismo , Proteínas Fúngicas/análise , Hidrólise , Oxirredução , Pleurotus/enzimologia , Pleurotus/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...